Linear Independence of Gamma Values in Positive Characteristic

نویسندگان

  • W. DALE BROWNAWELL
  • MATTHEW A. PAPANIKOLAS
چکیده

We investigate the arithmetic nature of special values of Thakur’s function field Gamma function at rational points. Our main result is that all linear dependence relations over the field of algebraic functions are consequences of the Anderson-Deligne-Thakur bracket relations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Independence of Arithmetic Gamma Values and Carlitz Zeta Values

We consider the values at proper fractions of the arithmetic gamma function and the values at positive integers of the zeta function for Fq [θ] and provide complete algebraic independence results for them.

متن کامل

Transcendence in Positive Characteristic

1. Table of symbols 2 2. Transcendence for Drinfeld modules 2 2.1. Wade’s results 2 2.2. Drinfeld modules 3 2.3. The Weierstraß-Drinfeld correspondence 3 2.4. Carlitz 5 2.5. Yu’s work 6 3. t-Modules 7 3.1. Definitions 7 3.2. Yu’s sub-t-module theorem 8 3.3. Yu’s version of Baker’s theorem 8 3.4. Proof of Baker-Yu 8 3.5. Quasi-periodic functions 9 3.6. Derivatives and linear independence 12 3.7....

متن کامل

Determination of the algebraic relations among special Γ-values in positive characteristic

We devise a new criterion for linear independence over function fields. Using this tool in the setting of dual t-motives, we find that all algebraic relations among special values of the geometric Γ-function over Fq[T ] are explained by the standard functional equations.

متن کامل

ALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)

We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.

متن کامل

Frobenius Difference Equations and Algebraic Independence of Zeta Values in Positive Equal Characteristic

In analogy with the Riemann zeta function at positive integers, for each finite field Fpr with fixed characteristic p we consider Carlitz zeta values ζr(n) at positive integers n. Our theorem asserts that among the zeta values in ∪∞ r=1 {ζr(1), ζr(2), ζr(3), . . . }, all the algebraic relations are those relations within each individual family {ζr(1), ζr(2), ζr(3), . . . }. These are the algebr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001